

Intro to Frequency Domain Design

MEM 355 Performance Enhancement of Dynamical Systems

Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University

Outline

- Closed Loop Transfer Functions
 - Essential Transfer Functions
 - Sensitivity functions
- Traditional Performance Measures
 - Time domain
 - Frequency domain
- Stability & Robustness
 - Introduction role of sensitivity functions
 - Nyquist
 - Traditional gain/phase margins

Closed Loop Transfer Functions

Closed Loop Transfer Functons

a generic structure

Transfer Functions

Error

$$E(s) = \frac{1}{1 + GK} R(s) - \frac{1}{1 + GK} D(s)$$

Control

$$U(s) = \frac{K}{1 + GK} R(s) - \frac{K}{1 + GK} D(s)$$

Output

$$Y(s) = \frac{GK}{1 + GK}R(s) - \frac{GK}{1 + GK}D(s)$$

Define the Loop Transfer Function:

L(s) = G(s)K(s) $E(s) = \frac{1}{1+L(s)}R(s) - \frac{1}{1+L(s)}D(s)$ $U(s) = \frac{K}{1+L(s)}R(s) - \frac{K}{1+L(s)}D(s)$

Three Key Transfer Functions

	Command	Disturbance
Error	$\frac{1}{1+L(s)}$	$\frac{-1}{1+L(s)}$
Control	$\frac{K(s)}{1+L(s)}$	$\frac{-K(s)}{1+L(s)}$
Output	$\frac{L(s)}{1+L(s)}$	$\frac{-L(s)}{1+L(s)}$

Sensitivity Functions $E(s) = [I + L]^{-1} R(s) - [I + L]^{-1} D(s), Y(s) = [I + L]^{-1} LR(s) - [I + L]^{-1} LD(s)$ sensitivity function: $S := [I + L]^{-1}$ command \rightarrow error complementary sensitivity function: $T := [I + L]^{-1} L$ command \rightarrow output For SISO systems Bode asked: If there is a small change in the open loop tf, L, what is the corresponding change in the closed loop command to output tf, T? change in command \rightarrow output transfer function $\frac{dT/T}{dT} = \frac{dT}{L}$ dL/L dLT with respect to change in L (normalized) $= \left\{ -[1+L]^{-2}L + [1+L]^{-1} \right\} \frac{L}{[1+L]^{-1}L}$ $= -[1+L]^{-1}L+1$ $= [1 + L]^{-1} = S$

Note the use of identity matrix, I, in these definitions. It shows the MIMO extension of the original SISO concepts.

Traditional Performance Criteria

Traditional Performance ~ Time Domain

- *ultimate error*, limit of e(t) as *t* approaches infinity
- *rise time*, *T_r*, usually defined as the time to get from 10% to 90% of its ultimate (i.e., final) value.
- settling time, T_s , the time at which the trajectory first enters an ε -tolerance of its ultimate value and remains there (ε is often taken as 2% of the ultimate value).
- peak time, T_p , the time at which the trajectory attains its peak value.
- peak overshoot, OS, the peak or supreme value of the trajectory ordinarily expressed as a percentage of the ultimate value of the trajectory. An overshoot of more than 30% is often considered undesirable. A system without overshoot is 'overdamped' and may be too slow (as measured by rise time and settling time).

Traditional Performance ~ Time Domain Cont'd

Bode Plot

Given any transfer function describing a SISO system Y(s) = G(s)U(s)Suppose the input is a sinusoid $u(t) = A\sin(\omega t),$ then the output is a sinusoid $y(t) = B\sin(\omega t + \theta)$ $|B = |G(j\omega)|A, \quad \theta = \angle G(j\omega)|$

Sensitivity Functions: A Fundamental Tradeoff

- Note that $[1+L]^{-1} + [1+L]^{-1} L = 1 \Longrightarrow S + T = 1$
- Making *S* small improves tracking & disturbance rejection but degrades system stability robustness and also makes it

susceptible to noise
$$|S| \downarrow_{0} \Rightarrow |T|^{\uparrow}$$
:

- Typical design specifications

And, there are other limitations.

Sensitivity Functions, Cont'd

For unity feed back systems:

A system is of type p if the transfer function L has p free integrators in the denomintor, i.e.

$$L(s) = k \frac{s^{m} + a_{m-1}s^{m-1} + \dots + a_{0}}{s^{p} \left(s^{n-p} + b_{n-p-1}s^{n-p-1} + \dots + b_{0}\right)}$$

We would

like *S*=0

We would

like T=1

Traditional Performance ~ Frequency Domain

Bandwidth Definitions

Sensitivity Function (first crosses $1/\sqrt{2}=0.707 \sim -3$ db from below): $\omega_{BS} = \max_{v} \left\{ v : \left| S(j\omega) \right| < 1/\sqrt{2} \quad \forall \omega \in [0, v) \right\}$

Complementary Sensitivity Function (highest frequency where T crosses $1/\sqrt{2}$ from above)

$$\omega_{BT} = \min_{v} \left\{ v : \left| T(j\omega) \right| < 1/\sqrt{2} \quad \forall \omega \in (v,\infty) \right\}$$

Crossover frequency

$$\omega_{c} = \max_{v} \left\{ v : \left| L(j\omega) \right| \ge 1 \quad \forall \omega \in [0, v) \right\}$$

Example: Bandwidth

Interpretation of Bode Plot

Any transfer function: G(s)

Output *Y* response to input *U*: E(s) = G(s)U(s) $Y(j\omega) = G(j\omega)U(j\omega)$ $|Y(j\omega)| = |G(j\omega)| |U(j\omega)|, \quad \angle Y(j\omega) = \angle G(j\omega) + \angle U(j\omega)$

Summary

- Need to consider 2-3 transfer functions to fully evaluate performance
- Bandwidth is inversely related to settling time
- Sensitivity function peak is related to overshoot and inversely to damping ratio

