

Intro to Frequency Domain Design

MEM 355 Performance Enhancement of Dynamical Systems

Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University

Outline

- Closed Loop Transfer Functions
	- Essential Transfer Functions
	- Sensitivity functions
- Traditional Performance Measures
	- Time domain
	- Frequency domain
- Stability & Robustness
	- Introduction role of sensitivity functions
	- Nyquist
	- Traditional gain/phase margins

Closed Loop Transfer Functions

Closed Loop Transfer Functons

a generic structure

Transfer Functions

Error

$$
E(s) = \frac{1}{1+GK}R(s) - \frac{1}{1+GK}D(s)
$$

Control

$$
U(s) = \frac{K}{1+GK}R(s) - \frac{K}{1+GK}D(s)
$$

Output

$$
Y(s) = \frac{GK}{1+GK}R(s) - \frac{GK}{1+GK}D(s)
$$

 $L(s) = G(s)K(s)$ $(s) = \frac{1}{1 + L(s)} R(s) - \frac{1}{1 + L(s)} D(s)$ $(s) = \frac{R(s) - R(s)}{1 + L(s)} R(s) - \frac{R(s)}{1 + L(s)} D(s)$ (s) (s) (s) (s) Define the Loop Transfer Function: $(s) = \frac{P(s)}{1 - R(s)} R(s) - \frac{P(s)}{1 - R(s)} D(s)$ $1 + L(s)$ 1 $E(s) = \frac{1}{1 + K(s)} R(s) - \frac{1}{1 + K(s)} D(s)$ $=\frac{1}{1+L(s)}R(s)-\frac{1}{1+L(s)}$ $U(s) = \frac{K}{1 - K(s)} R(s) - \frac{K}{1 - K(s)} D(s)$ $=\frac{R(s)}{1+L(s)}R(s)-\frac{R(s)}{1+L(s)}$ $L(s)$ $L(s)$ $Y(s) = \frac{P(s)}{1 - R(s)} R(s) - \frac{P(s)}{1 - R(s)} D(s)$ $=\frac{L(s)}{1+L(s)}R(s)-\frac{L(s)}{1+L(s)}$

Three Key Transfer Functions

Sensitivity Functions $[I + L\bigcap (R(s) - I) + L\bigcap D(s), Y(s) = I + L\bigcap (LR(s) - I) + L$ $| I+L |$ complementary sensitivity function: $T := [I + L]^{-1} L$ command \rightarrow output \sqrt{N} $\sqrt{1}$ $\sqrt{1}$ $\sqrt{2}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ sensitivity function: $S := [I + L]^{-1}$ command \rightarrow error For SISO systems Bode asked: If there is a small change in the open loop tf, L, $(S) = |I + L|^{-1}(R(S) - |I| + |L|^{-1}D(S), Y(S) = |I + L|^{-1}(LR(S) - |I + L|^{-1}LD(S))$ $S:$ $E(s) = |I + L|^{-1} (R(s) - |I) + L|^{-1} D(s), Y(s) = |I + L|^{-1} (LR(s) - |I + L|^{-1} LD(s))$ $S := |I + L$ $-\frac{1}{\sqrt{N}}$ $\left[\frac{1}{N}\right]$ $\left[\frac{1}{N}\right]$ $\left[\frac{1}{N}\right]$ $\left[\frac{1}{N}\right]$ $\left[\frac{1}{N}\right]$ $\left[\frac{1}{N}\right]$ $\left[\frac{1}{N}\right]$ $\left[\frac{1}{N}\right]$ $^{-1}$ command \rightarrow $=\left[I+L\right]^{-1}\left(R(s)-\left[I\right]+L\right]^{-1}D(s), Y(s)=\left[I+L\right]^{-1}\left(LR(s)-\left[I+\right]\right)$ $= \left[I + \right]$ dL/L *dL T* with respect to change in *L* (normalized) what is the corresponding change in the closed loop command to output tf, T ? change in command \rightarrow output transfer function dT/T *dT L* = $\left\{-[1+L]^{-2}L + [1+L]^{-1}\right\}\frac{L}{[1+L]^{-1}}$ $=-[1+L]^{-1}L+1$ $=[1+L]^{-1} = S$ $\left[1+L\right]^{-2}L + \left[1+L\right]^{-1} \left\{\frac{L}{\left[1+L\right]}\right\}$ $[L]^{-2}L + [1 + L]^{-1}$ $\left\{\frac{L}{H-L}\right\}$ $L \}^{-1} L$ -2 \bf{r} + $\bf{r1}$ + $\bf{r1}$ $=\left\{-[1+L]^{-2}L + [1+L]^{-1}\right\} \frac{L}{\Gamma(1+L) - 1}$ +

Note the use of identity matrix, I, in these definitions. It shows the MIMO extension of the original SISO concepts.

Traditional Performance **Criteria**

Traditional Performance ~ Time Domain

- *ultimate error*, limit of *e*(*t*) as *t* approaches infinity
- *rise time, T_r*, usually defined as the time to get from 10% to 90% of its ultimate (i.e., final) value.
- *settling time*, T_s , the time at which the trajectory first enters an ε -tolerance of its ultimate value and remains there (ε is often taken as 2% of the ultimate value).
- *peak time*, T_p , the time at which the trajectory attains its peak value.
- *peak overshoot*, *OS*, the peak or supreme value of the trajectory ordinarily expressed as a percentage of the ultimate value of the trajectory. An overshoot of more than 30% is often considered undesirable. A system without overshoot is 'overdamped' and may be too slow (as measured by rise time and settling time).

Traditional Performance ~ Time Domain Cont'd

rise time peak time settling time

Bode Plot

 $Y(s) = G(s)U(s)$ $u(t) = A \sin(\omega t),$ $y(t) = B \sin(\omega t + \theta)$ $B = |G(j\omega)|A, \quad \theta = \angle G(j\omega)$ Given any transfer function describing a SISO system Suppose the input is a sinusoid then the output is a sinusoid

Sensitivity Functions: A Fundamental **Tradeoff**

Note that $[1 + L]^{-1} + [1 + L]^{-1} L = 1 \Rightarrow S + T = 1$ $+ L^{-1} + [1 + L]^{-1} L = 1 \Rightarrow S + T =$

Making S small improves tracking & disturbance rejection but degrades system stability robustness and also makes it

susceptible to noise
$$
|S| \underset{0}{\downarrow} \Rightarrow |T| \overset{1}{\uparrow}
$$
:

Typical design specificatio ns

 $(j\omega) \ll 1 \quad \omega \in]0, \omega_1|$ $(j\omega) \ll 1 \quad \omega \in]\omega_2,\infty[$ 1 $2 - \omega_1$ 2 $1 \quad \omega \in [0,$ $1 \quad \omega \in \vert \omega_2,$ *S j* $T(\,j$ ω \leq \leq ω \in \cup , ω $\omega_{0} > \omega_{0}$ ω \parallel << \parallel ω \in \parallel ω $<< 1 \quad \omega \in$ $>$ $<< 1 \quad \omega \in [\omega, , \infty]$

And, there are other limitations.

Sensitivity Functions, Cont'd

For unity feed back systems:

A system is of type p if the transfer function L has p free integrators in the denomintor, i.e.

$$
L(s) = k \frac{s^{m} + a_{m-1} s^{m-1} + \dots + a_{0}}{s^{p} (s^{n-p} + b_{n-p-1} s^{n-p-1} + \dots + b_{0})}
$$

Traditional Performance ~ Frequency Domain

Bandwidth Definitions

 $\mathcal{L}_{BS} = \max_{\mathcal{V}} \left\{ \mathcal{V} : \left| S(j\omega) \right| < 1/\sqrt{2} \quad \forall \omega \in [0, \nu) \right\}$ Sensitivity Function (first crosses $1/\sqrt{2}$ =0.707~-3db from below): *v* $\omega_{BS} = \max \{v : |S(j\omega)| < 1/\sqrt{2} \quad \forall \omega \in [0, v]\}$

Complementary Sensitivity Function (highest frequency where *T* crosses $1/\sqrt{2}$ from above)

$$
\omega_{BT} = \min_{v} \left\{ v : \left| T(j\omega) \right| < 1/\sqrt{2} \quad \forall \omega \in (v, \infty) \right\}
$$

Crossover frequency

$$
\omega_c = \max_{v} \left\{ v : \left| L(j\omega) \right| \ge 1 \ \forall \omega \in [0, v) \right\}
$$

Example: Bandwidth

Interpretation of Bode Plot

Any transfer function: $G(s)$

Output Y response to input $U: E(s) = G(s)U(s)$ $Y(j\omega) = G(j\omega)U(j\omega)$ $Y(j\omega) = |G(j\omega)||U(j\omega)|$, $\angle Y(j\omega) = \angle G(j\omega) + \angle U(j\omega)$

Summary

- Need to consider 2-3 transfer functions to fully evaluate performance
- Bandwidth is inversely related to settling time
- Sensitivity function peak is related to overshoot and inversely to damping ratio

